Materials-Related Distress

BEST PRACTICES WORKSHOP

U.S. Department of Transportation

Federal Highway Administration

IOWA STATE UNIVERSITY Institute for Transportation

Outline

• Why are we here ≽42

Introduction

- Concrete pavements are inherently durable, having a history of exceptional long-term performance
- In some instances, pavement service life has been adversely affected by the concrete's inability to maintain its integrity in the environment in which it was placed
- These distress manifestations are categorized as materials-related distress (MRD)

What is Materials-Related Distress?

- MRD is commonly associated with the "durability" of the concrete
- Durability is not an intrinsic material property
 - Concrete that is durable in one application may rapidly deteriorate if placed in another application
 - "Durability" can not be measured directly.
 Potential durability can be inferred
- It is not related to loading, although loading can exacerbate the distress

MRD Manifestations

- Fine pattern cracking
 - ➤ Isolated to joints or over entire surface
 - > Progressive in nature, getting worse over time
- Degradation such as spalling or scaling
- Often accompanied by staining and/or exudate
- Evidence of expansion is also common with some types of MRD

And This?

What About This One?

How About Here?

Important Considerations

- The concrete constituents, proportions, and construction all influence MRD
- Water is needed for deleterious expansion to occur
- Severe environments (e.g. freezing and thawing, deicer applications, high sulfate soils, etc.) are major contributors
- Strength does not equal durability

Materials Basics - Hardened Cement Paste (HCP)

- Combination of cement, supplementary cementitious materials (SCMs), water, and admixtures to form hydration products and entrained air
 - > HCP provides cohesion to the concrete mixture
 - Comprised (primarily) of calcium silicate hydrate (CSH) and calcium hydroxide (CH)
 - > CSH provides strength and is desirable
 - CH provides little strength and plays a role in many MRD mechanisms
 - >CH is soluble in water; solubility maximum at 0 °C (32 °F)
 - ➤ Pozzolans (e.g., fly ash) consume CH and yield CSH

Materials Basics - Aggregates

- Natural gravel, quarried rock, and sand, or manufactured mineral filler (e.g., air-cooled blast furnace slag and manufactured sand)
 - > 65–80% volume of the concrete
 - ➤ Less expensive than components of the HCP
 - Provide the load-carrying capacity of concrete
 - Provide dimensional stability
 - Generally considered inert but not always the case
 - > Aggregate quality significantly impacts concrete quality
 - ➤ Local sources used (shipping considerations) so poor quality is often accepted but needs to be mitigated

Mechanisms of MRD Common in Pavements

Physical Mechanisms

- > Freeze-thaw deterioration of hardened cement paste
- Deicer scaling/deterioration
- Freeze-thaw deterioration of aggregate

Chemical Mechanisms

- ➤ Alkali-aggregate reactivity
 - ➤ Alkali-silica and alkali-carbonate reactivity
- Sulfate attack
 - >External and internal sulfate attack
- Corrosion of embedded steel

Freeze-Thaw Deterioration of Hardened Cement Paste

Overview

- Deterioration of saturated HCP due to repeated freeze-thaw cycles
- Manifests as scaling, spalling, or map cracking
- > Typically appears within 1 to 5 years after construction
- ➤ Prevented through the use of air entraining admixtures which create a protective air-void system

Freeze-Thaw Deterioration of Hardened Cement Paste

- Mechanism
 - Results when the HCP becomes "critically saturated" and concrete under goes F-T cycles

> The expansion of ice causes tensile forces that crack

concrete

Freeze-Thaw Deterioration of Hardened Cement Paste

- Prevention
 - ➤ Entrained air-void system
 - ➤ Delays the time to critical saturation
 - ➤ Provides space for ice formation
 - ➤ Allows for water movement (minimizing hydraulic pressure)
 - Volume and spacing of voids critical

Testing

- > The air-void system can be evaluated using various tests
 - ➤ ASTM C231 Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
 - ➤ ASTM C173 Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method
 - ➤ ASTM C138 Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete
 - ➤ ASTM C457 Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete
 - ➤ AASHTO TP 118 Characterization of the Air- Void System of Freshly Mixed Concrete by the Sequential Pressure Method

Testing

- ➤ ASTM C231 (pressure meter), ASTM C173 (roller meter), and ASTM C138 (unit weight bucket) all measure **ONLY** the air content (A)
- ➤ Air content is the volumetric air content, typically 4 8 % volume by specification
- > For QC purposes it is sufficient to measure the volume of air
- ➤ To fully establish F-T durability other air-void system (such as spacing factor) parameters are more important

unprotected paste

 r_{a_n} = radius of air void n r_{p_n} = radius of FT protection

F-T durability requires adequate air void system

> Spacing Factor (\overline{L}) :

- Approximates the constant distance from the surface of each air void surface, which would encompass some large fraction of the paste[†]
- > Maximum: less than 0.2 mm (0.008 in.) (ACI 201)

> Specific Surface (α):

- Surface-to-Volume Ratio
- ➤ Defines the surface area associated with a unit volume of void space smaller voids (i.e., more voids per unit volume) result in a higher specific surface
- ➤ Minimum: 24 mm²/mm³ (600 in.²/in.³)

➤ Air Content (A)

- Measured on hardened & fresh concrete
- > L and α assumed proportional to A in fresh concrete

† Snyder, K., N. Natesaiyer and K. Hover. 2001. The Stereological and Statistical Properties of Entrained Air Voids in Concrete: A Mathematical Basis for Air Void System Characterization. *Materials Science of Concrete VI*. Eds. S. Mindess and J. P. Skalny. American Ceramic Society, Westerville, OH. pp. 129–214.

Testing

- ➤ To measure spacing factor, specific surface, and other air-void system parameters, it is necessary to analyze hardened concrete using ASTM C457
 - ➤ Requires special equipment and skilled operator (petrographer)
 - ➤ Because only hardened concrete can be analyzed, can only be used as a QA tool
- ➤ AASHTO TP 118 (SAM meter) is an emerging technique that measures a combined parameter (SAM number) on fresh concrete that correlates to F-T performance in a manner similar to ASTM C457

Air-Void System Analysis – ASTM C457

Testing

- ➤ Measurement of F-T performance of a concrete mixture is measured using ASTM C666 Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing
- ➤ Measures the loss in dynamic modulus after undergoing up to 300 cycles of freezing (either in air or water) and thawing (in water)
- > Test is severe and does not always correlate with field performance, but serves as a mixture screening test
- Performed as part of mixture design, not as part of a QC/QA program (typically)

Deicer Scaling

Deicer Scaling

Deicer Scaling/Deterioration

Overview

- Deicer chemicals can amplify paste freeze-thaw deterioration and may also chemically react with or degrade hydrated paste constituents
- Manifests as scaling, spalling, or map cracking with possible staining near joints
- > Typically appears within 1 to 5 years after construction
- Prevented through the use of air entraining admixtures and a relatively low water-to-cement ratio
- Minimize finishing, which can reduce air content at surface

Deicer Scaling/Deterioration

- Mechanism
 - Not well understood
 - Current research indicates scaling is due to tensile forces developed in the surface layer of concrete due to expansion of the ice layer[†]
 - ➤ The expansive forces of the ice are at a maximum when the solution freezing on the surface contains ~3% dissolved salt, and the type of salt is not a factor[†]
 - Often seen when the concrete is over finished, working the air out of the surface layer

† Valenza, J. J. and G. W. Scherer. 2007. A Review of Salt Scaling: II. Mechanisms, *Cement and Concrete Research*. Vol. 37, No. 7, pp. 1022–1034.

Impact of Poor Finishing

Deicer Scaling/Deterioration

- Prevention
 - > Do not over finish
 - ➤ Good air-void system to begin with
 - ➤ Avoid salts especially at early ages (i.e., one year or less)
 - > Proper curing
 - > Penetrating sealers to reduce water ingress

Deicer Scaling/Deterioration

Testing

- ➤ Scaling performance of a concrete mixture is measured using ASTM C672 Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals
- ➤ Assesses (by visual inspection only) the loss of material from the concrete surface after ponding dilute salt solution on the surface and exposing the samples to 50 cycles of F-T
- ➤ Test is widely criticized for its subjectivity; modifications include measuring the mass loss from the sample
- > Test very susceptible to how specimens are finished

F-T Deterioration of Aggregate (D-cracking)

Overview

- Caused by the fracturing or dilation of coarse aggregate under freeze-thaw cycling in a saturated state
- Manifests as cracking and staining parallel to joints and cracks that may eventually spall
- ➤ Commonly manifests within 10 to 15 years
- ➤ Prevented through the use of non-susceptible aggregates or reduction in the top size of the coarse aggregate

Aggregate Freeze-Thaw Deterioration

F-T Deterioration of Aggregate

- Mechanism
 - > Aggregates are porous and absorb water
 - ➤ The rate of water absorption and the rate of water expulsion is a function of the pore size distribution of the aggregates
 - ➤ D-cracking aggregates have a pore size distribution that does not allow for rapid expulsion of water as a freezing front moves through an aggregate
 - ➤ The resulting hydrostatic pressure forces can exceed the tensile strength of the aggregate

18.1 x 13.6 mm

F-T Deterioration of Aggregate

- Prevention
 - ➤ Avoid the use of susceptible aggregates
 - ➤D-cracking aggregates are best identified by experience
 - ➤ When it is necessary to use susceptible aggregates, limit the aggregate top size
 - ➤ A smaller aggregate particle diameter allows for more rapid expulsion of absorbed water

F-T Deterioration of Aggregate

- ➤ Iowa Pore Index Test (IPIT)
 - ➤ Measures the amount of water absorbed by aggregates under pressure (241 kPa, 35 psi) in a prescribed time
 - Water absorbed 0–1 minutes macropores (Primary Load)

 - Secondary Load > 27 mL is associated with D-racking susceptible aggregates
- ➤ IPIT results are more representative of the parent rock because of the large sample volume used (9000 g)
- ➤ Variable/erroneous results for aggregates with rapid rates of early absorption
- > No discernible trends in the results from gravels

F-T Deterioration of Aggregate

- ➤ Washington Hydraulic Fracture
 - ➤ Measures the amount of particle fracture that occurs after pressurizing aggregate (7930 kPa, 1150 psi) submerged in water
 - Start with n particles retained on a 12.5 mm (1/2 inch) sieve. After 10 cycles of pressure and release, report the increase in the number of particles retained on a #4 sieve as a percentage of n (percent fracture)
 - From these measurements determine the number of pressurization cycles required to create a percent fracture of 10% - low values indicate more Dcracking susceptibility
 - ➤ Can identify aggregates likely to fail due to hydraulic pressures
 - ➤ Does not simulate the confining effect of the HCP
 - ➤ Cannot identify aggregates that cause cracking due to excessive water expelled from aggregates

Alkali-Silica

Overview

- ➤ Caused by a reaction between alkalis in the paste pore solution and reactive silica in aggregate that forms expansive reaction product
- ➤ Manifests as map cracking over the entire slab area. Exudate is common, as is expansion related distress
- ➤ Commonly occurs within 5 to 15 years
- Prevented through the use of non-susceptible aggregates, limiting total mixture alkalinity, and addition of pozzolans

- ➤ In the presence of pore solution (i.e., H₂O, Na⁺, K⁺, Ca²⁺, OH⁻, and H₃SiO₄⁻ ions), reactive silica undergoes depolymerization, dissolution, and swelling
- ➤ Depends on pH of the solution, not on alkalis per se, although they control the pH
- > The higher the pH, the more soluble the silica
- ➤ Attack is more aggressive when the silica is not crystalline (i.e., amorphous or crypto-crystalline) as in cherts or opaline shales

Ming-shu, Tang and Su-feng Han. 1980. Effect of Ca(OH)₂ on Alkali-Silica Reaction, *Proceedings of the 7th International Congress on the Chemistry of Cement*, Session II, pp. 94–99. June 30–July 5, Paris, France).

Silica tetrahedra forming siloxane bond[†]

- Silicon and oxygen prefer to combine in "tetrahedral coordination"
- > Four (4) oxygens surround each silicon open surface structure

Charged surface attracts H⁺ and OH⁻ ions from alkali pore water

With alkalis in pore water, Na⁺ substitutes for H⁺

• If any excess alkalis still exist, the associated hydroxyl (OH⁻) breaks the Si-O-Si bond and free an oxygen

Hydrogen dissociates from OH⁻, combines with O²⁻ to form water.
 Na⁺ substitutes for H⁺ and the attack has progressed

• Si-O-Si + 2OH + 2Na + -> 2(Si-O-Na) + H₂O

7.2 x 5.4 mm

- Prevention
 - > Avoid use of reactive aggregates
 - > Limit alkalis in the concrete mixture
- Mitigation
 - ➤ Use of SCMs
 - ➤ Fly Ash
 - ➤ Slag Cement
 - ➤ Use of Lithium

Guidance

- ➤ ASTM C1778 Standard Guide for Reducing the Risk of Deleterious Alkali-Aggregate Reaction in Concrete
- ➤ AASHTO PP-65 Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction
 - ➤ Performance Approach
 - Demonstrate performance (ASTM C1260 and ASTM C1293)
 - Prescriptive Approach
 - Limit the alkali content of the concrete mixture
 - Mitigate with SCMs

- Various Screening Methods
 - ➤ ASTM C295 Standard Guide for Petrographic Examination of Aggregates for Concrete
 - ➤ ASTM C1260 Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)
 - ➤ ASTM C1567 Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method)
 - ➤ ASTM C1293 Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction

- > ASTM C295
 - ➤Outlines procedures for the petrographic examination of materials proposed for use as aggregates in cementitious mixtures or as raw materials for use in production of aggregates
 - ➤ Can identify, and approximate the quantity of, potentially ASR reactive aggregates
 - ➤ Useful way to screen potential sources
 - ➤ If an aggregate is identified as potentially reactive by petrography, expansion testing is still required to identify if the aggregate exhibits deleterious ASR or to identify mitigation strategies

- ➤ ASTM C1260
 - ➤ Used to detect the potential for deleterious alkali-silica reaction of aggregate in mortar bars
 - ➤ Samples are exposed to NaOH solution for 14 days (cement alkali content not a factor) and expansion measured
 - ➤ Accepted expansion limit (0.1 at 14 days) chosen emperically to correlate with an ASTM C1293 expansion of 0.04
 - ➤ Performing the test with modifications (e.g., exposure time other than 14 days, expansion limit other than 0.1 or any other changes undermines the validity of the test

- > ASTM C1567
 - ➤ Used to detect the potential for deleterious alkali-silica reaction of combinations of cementitious materials and aggregate in mortar bars
 - Samples are exposed to NaOH solution for 14 days and expansion measured
 - ➤ Accepted expansion limit (0.1 at 14 days) chosen empirically to correlate with an ASTM C1293 expansion of 0.04
 - ➤ Mitigation of expansion can be evaluated by the test, but the actual SCM replacement level required must be confirmed by ASTM C1293 or field experience

Testing

➤ ASTM C1293

- ➤ Estimates the susceptibility of an aggregate, or combination of an aggregate with pozzolan or slag, for participation in expansive ASR by measurement of length change of concrete prisms
- ➤ Samples are spiked with alkali to create any possible ASR and expansion is monitored for 1 2 years, depending on the test intent accepted expansion limit (0.04 at 1 year)
- ➤ Pozzolan replacement levels established by ASTM C1293 should be treated as the minimum required
- ➤ The "gold standard" of ASR testing not without incorrect results but the best test available
- ➤ Concerns with the test include alkali leaching from the specimens over time

Overview

- ➤ Caused by a reaction between alkalis in the paste pore solution and <u>specific</u> carbonate/dolomitic aggregates that under go dedolomitization and brucite formation
- Manifests as map cracking over entire slab area with accompanying expansion related distress
- ➤ Commonly manifests in 5 to 15 years
- ➤ Only sure prevention is to avoid susceptible aggregates, although blending and sizing aggregates and/or significantly reducing total alkalinity may be effective
- ➤ Mitigation is not possible

Mechanism

Dedolomitization

$$CaMg(CO_3)_2 + 2(Na,K)OH \rightarrow Mg(OH)_2 + CaCO_3 + (Na,K)CO_3$$

Dolomite Alkali Hydroxide Brucite Calcite Alkali Carbonate

Recycle Alkalis – leads to carbonate halos

$$Na(K)_2CO_3 + Ca(OH)_2 \rightarrow CaCO_3 + 2Na(K)OH$$

Alkali Carbonate CH Calcite Alkali Hydroxide

Recycling of alkalis makes mitigation ineffective

1.24 x 0.93 mm

Image: Karl Peterson, University of Toronto

- Mechanism Possible Reasons For Expansion
 - Swelling of clay minerals in dolomite
 - > Dedolomitization increases permeability, more water ingress, possible swelling
 - Crystal growth in dolomite matrix
 - Brucite formation
 - Increased alkalis leading to ASR
 - ➤ Microcrystalline silica is present in many aggregates <u>reported</u> to be ACR susceptible
 - ➤ IMPORTANT: Requires a specific dolomite rock type Only a very slight fraction of dolomite rocks are ACR reactive specific geologic deposits/locations (i.e., argillaceous dolomitic limestone, fine grained matrix with dolomite crystals embedded)
- Prevention Avoid ACR susceptible aggregates

Testing – Reject aggregates based on chemistry

- ➤ ASTM C586 Standard Test Method for Potential Alkali Reactivity of Carbonate Rocks as Concrete Aggregates (Rock-Cylinder Method)
 - Used to screen rock materials for potential ACR reactivity
- ➤ ASTM C1105 Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction
 - ➤ Determines the susceptibility of cement-aggregate combinations to expansive alkali-carbonate reaction for certain calcitic dolomites and dolomitic limestones
- ➤ Aggregates passing ASTM C1105 should be evaluated for ASR potential using ASTM C1260 or C1293, as appropriate

- Overview
 - Expansive formation of sulfate minerals resulting from an external source of sulfate ions
 - ➤ Fine cracking and deterioration near joints and slab edges and on underside of slab
 - Usually manifests within 1 to 5 years
 - ➤ Mitigated through the use of low *w/c*, minimizing aluminate phases in cementitious materials, or using pozzolans or ground slag

- Mechanism
 - > Sulfate-laden solution enters concrete
 - > Sulfate reacts with alumina and calcia to form ettringite
 - ➤ Monosulfate normally present in HCP is converted to ettringite
 - ➤ Ettringite can form in HCP or at the HCP-aggregate interface
 - Conversion to ettringite results in volume increase expansion – and cracking
 - ➤ Ettringite that forms in air voids does not exert expansive pressures but may compromise the air-void system

Mechanism – Example Reactions

Symbols Used

$$\overline{S}$$
 = sulfate ion (SO₄²⁻)
CH = calcium hydroxide (Ca(OH)₂)
AFm = monosulfate (3CaO \Box Al₂O₃ \Box CaSO₄ \Box 12H₂O)
AFt = ettringite (3CaO \Box Al₂O₃ \Box 3CaSO₄ \Box 32H₂O)

Ettringite Formation with Calcium Hydroxide Dissolution

$$4(Na,K)^{+} + 2\overline{S} + 2CH + AFm \rightarrow 4(Na,K)^{+} + AFt + 4OH^{-}$$

Mechanism – Example Reactions

Symbols Used

Gypsum Formation with Calcium Hydroxide Dissolution

$$(Na,K)^+ + \overline{S} + CH \rightarrow 4(Na,K)^+ + C\overline{S} + 4OH^-$$

Mechanism – Example Reactions

Symbols Used

$$\overline{S}$$
 = sulfate ion (SO₄²⁻)
 CSH = calcium silicate hydrate (1.7Ca \square SiO₂ \square 4H₂O)
 CSH_{\square} = decalcified calcium silicate hydrate (< 1.7Ca \square SiO₂ \square 4H₂O)
 AFm = monosulfate (3CaO \square Al₂O₃ \square CaSO₄ \square 12H₂O)
 AFt = ettringite (3CaO \square Al₂O₃ \square 3CaSO₄ \square 32H₂O)

Decalcification of CSH Due To Ettringite Formation

$$nCSH + AFm + 4(Na,K)^{+} + 2\overline{S} \rightarrow nCSH_{D} + AFt + 4(Na,K)^{+} + 4OH^{-}$$

Mechanism – Example Reactions

Symbols Used

$$\overline{S}$$
 = sulfate ion (SO₄²⁻)
CSH = calcium silicate hydrate (1.7Ca \square SiO₂ \square 4H₂O)
CSH_D = decalcified calcium silicate hydrate (< 1.7Ca \square SiO₂ \square 4H₂O)
 \overline{CS} = calcium sulfate, gypsum (CaSO₄ \square 2H₂O)

Decalcification of CSH Due To Gypsum Formation

$$nCSH + 2(Na, K)^{+} + \overline{S} \rightarrow nCSH_{D} + C\overline{S} + 2(Na, K)^{+} + 2OH^{-}$$

Image: Karl Peterson, University of Toronto

- Prevention
 - > Reduce concrete permeability
 - ➤ Lower *w/c* see ACI 201.2R-08 *Guide to Durable Concrete* for guidance on *w/c* determination based on sulfate exposure
 - ➤ Use pozzolans or slag to densify the CSH and reduce the available CH for reaction see ACI 201.2R-08 *Guide to Durable Concrete* for guidance on replacement level
 - Reduce aluminate phases in cementitious materials that can react
 - ➤ Use ASTM C150 Type II or Type V cement and limit aluminate phases in SCMs see ACI 201.2R-08 *Guide to Durable Concrete* for guidance on cement selection based on exposure class and SCM composition

Overview

- Expansive formation of ettringite in paste due to an internal source of sulfates
 - ➤ Most commonly associated with high curing temperatures (delayed ettringite formation)
 - ➤ Can also be associated with an internal source of sulfates (e.g. aggregate, fly ash, etc.)
- ➤ Fine cracking concentrated at joints but may effect entire slab area
- Usually manifests in 1 to 5 years
- Prevented by controlling internal sources of sulfate and avoiding high curing temperatures

- Internal attack is most commonly associated with steam cured concrete
 - ➤If concrete is cured at temperatures above 70-80 °C (158-176 °F) the formation of ettringite during the initial set is "delayed" and monosulfate is formed
 - The monosulfate later converts to ettringite after the concrete hardens resulting in expansion and cracking
- ➤ Other forms of internal sulfate attack involve sources of sulfate from the constituent materials leading to the same reactions observed with external sources of sulfate

- Prevention
 - Fortunately not a distress associated with cast in place concrete
 - > For steam cured concrete observe proper curing temperatures
 - > For all concrete limit sulfate contents in constituent materials
 - ➤ Portland cement is typically sulfate balanced and not an issue
 - ➤SCMs and aggregates can be likely sources of sulfate
 - > Problems with sulfide-bearing aggregates have been reported
 - Pyrrhotite $[Fe_{(1-X)}S (x = 0 \text{ to } 0.2)]$ weathering/oxidizing to provide sulfate internally

Sulfate Attack

- ➤ Internal sulfate attack can be addressed by monitoring the chemical composition of the concrete materials
- ➤ ASTM C1012 Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution
 - ➤ Used to evaluate combinations of materials for susceptibility from external sulfate attack by monitoring the length change of mortar bars immersed in a sulfate solution
 - ➤ Test duration a minimum of twelve (12) months, or eighteen (18) months in the case of ACI 201 defined Class 3 exposure
 - ➤Test exhibits considerable variation

- Overview
 - Associated most often with chloride ingress, which destroys passivity film protecting steel
 - Appears as cracking and spalling above and around embedded steel
 - >Rust staining
 - Commonly manifests in 3 to 10 years
 - Prevented by providing adequate concrete cover, reducing concrete permeability, protecting steel, or using corrosion inhibitors

- ➤ At the anode iron is oxidized and combines with OH⁻ to form corrosion product
- > At the cathode electrons, oxygen, and water combine to form OH-
- Both reactions must occur simultaneously

- Under normal conditions the high pH of the concrete creates a corrosion layer on the steel that protects it from corrosion – passivation layer
- Passivation layer blocks the diffusion of water and oxygen to the steel and the cathode reaction is shut down, stopping the overall corrosion reaction

- ➤ Carbon dioxide (CO₂) lowers the pH of the concrete and the passivation layer breaks down
- ➤ Chloride (Cl⁻) attacks the passivation layer directly *mechanism unclear*
- ➤ Limiting fluid ingress (CO₂, O₂, Cl⁻, and H₂O) limits corrosion

Prevention

- Provide adequate cover (concrete) over steel to reduce/slow the ingress of fluids
- > Reduce concrete permeability (low w/c, penetrating sealers)
- ➤ Use corrosion inhibiting chemicals in the concrete to counteract the effects of chlorides or CO₂
- ➤ Minimize cracking in the concrete cover

Final Thoughts

- Many manifestations of MRD look similar, and therefore identification can not be made based on visual assessment alone
- Water is necessary for deleterious expansion to occur
- Severe environments (freezing and thawing, deicers, sulfates, etc.) exacerbate the problem
- Durable materials are typically low shrinkage and relatively impermeable